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Artificial boundary conditions for the steady Euler equations in
a channel are considered. Non-reflecting terms are added to the
boundary conditions to accelerate the convergence to the steady
state. The aim of the article is to investigate how the steady and
non-reflecting parts of the combined conditions should be balanced.
It turns out that the scaling of the non-reflecting terms depends on
the solution and on the size of the computational region, Numerical
examples are presented. @ 1995 Academic Press, Inc.

1. INTRODUCTION

Attificial boundaries are often needed in computational prob-
lems to make unbounded regions bounded. A problem is that
data usvally are missing at these boundaries. We thus need
boundary condittons which lead to good solutions even if data
are missing.

For time dependent problems artificial boundary conditions
should annihilate waves coming from the interior. Otherwise
waves are reflected back into the domain at the non-physical
boundary. Such non-reflecting conditions have been developed
for a large number of problems. An overview is given by Givoli
{9]. Some examples are {12, 3, 1G, i1].

Many non-reflecting conditions lead to steady solutions of
poor accuracy. The steady solution may depend on the initial
one which we do not know how 1o choose. On the other hand,
non-reflecting conditions often lead to rapid convergence to the
steady state. We are thus interested in non-refiecting conditions
which lead to accurate steady solutions. Bayliss and Turkel {1]
derive non-reflecting conditions for the Euler equations which
they use for steady state calculations. The boundary conditions
are obtained from expansions of the solution at large distances.

Very accurate boundary conditions for the steady Euler equa-
tions in a channel are studied in [3, 7, 8]. The corresponding
conditions for the external problem also lead to accurate solu-
tions but they are more complicated to use [6].

The steady problem can be solved with a direct solver or with
a time-marching procedure in the interior. Newton’s method is
used in [7, 5} to solve the discretized steady Fuler equations
in a channel directly. The converged solutions are obtained
within three or four iterations using different boundary condi-
tions including the exact steady ones.

When time-marching methods are used in the interior the
situation is very different. The steady conditions for the Euler
equations often lead to large numbers of time steps before the
steady states are reached. The solution might even not converge.
It is thus necessary to improve the convergence to the steady
state.

Waves coming perpendicular to the boundary from the inte-
rior are not reflected back if the characteristic variables corre-
sponding to ingoing characteristics are kept fixed in time {3,
4, 10). Therefore Engquist and Halpern [2] differentiate these
characteristic variables with respect to time and add them to
the steady conditions. Thus these characteristic variables vary
miore slowly in time at the boundary, but we still expect the
same steady solution as with the unmodified steady conditions.
This combined technique is used for the Euler equations in a
periodic channel by Giles [R]. Rudy and Swrikwerda [14, 15]
use the same idea for another steady condition. A problem is
how to scale the non-reflecting terms in the combined condi-
tions. This problem is solved in [14] for the case when the
steady conditions specify the outflow pressure and the inflow
velocity. The combined technigue is used at the outflow bound-
ary. The analysis is one-dimensional.

The aim of this article is to study the scaling of non-reflecting
termis added to the accurate steady conditions for the BEuler
equations in a channel. The steady and combined boundary
conditions are described in Section 2. The mean values of the
solution across the boundary are treated separately by the steady
conditions. The treatment of the mean values is considered in
Section 3. The scaling parameters of the combined conditions
are studied in Section 4. The method by Rudy and Strikwerda
[14] is used to optimize the parameters. We show that the
scaling depends on the speed of sound and the length of the
channel. Numerical examples are presented in Section 5. Some
conclusions are given in Section 6.

2. THE BOUNDARY CONDITIONS

We consider flow in an infinitely long channel with straight
walls owtside a bounded region. Intreduce an artificial inflow
boundary x = a to the ieft of the bounded region and an artificial
outflow boundary x = b to the right. Two examples are given
in Fig. 2. The artificial boundaries are the dashed lines x =
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a =0and x = b = 1, The boundary conditions are intended
for problems where the flow is subsonic on and ouiside the
artificial boundaries. The boundary should thus be moved out-
side supersonic areas of the solution.

The boundary conditions are designed to be satisfied exactly
in the region outside the artificial boundary by the solution of
the linearized steady Euler equations

Aw, + Bwy =0, )
where
u p 0 0 00 p D
0 uw 0 1/p 00 0 0
A= , B= b
0 0 u 0 00 0 p
0 ¢p 0 = 0 0 % 0
(2)
P
"
w:‘:
v

Note that we may linearize around different states for the inflow
and outflow boundary conditions.

2.1. The Steady Boundary Conditions

Introduce the Fourier expansions

plx, y) Pulx)

uy) | = 3 | @) feos T2, 3)
w=0

pix, ) Bul) ’

D5 y) = S B,(x) sin 2, )

w=1 L}‘

where L, is the width of the channel on and outside the boundary,
and the lower channe! wall is y = 0. The inflow boundary
conditions for w > 0 are

b a) = mﬁm(a), (5)
(P - T P = (6)
(P * pf)a) = 0, (7
and the outflow condition is
puB) = — — D.(b) ®)
Pu N

Here m, and 1, are the inflow and outflow valves of
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where M is the Mach number M = u/c. Conditions {6) and (7)
can be written as

(B~ pla,y) = &)
@ + puit)a,y) =0, (10)
where 7, it, p are defined by
Blx, y) = plx, ) = po(x), (11
#x, y) = ulx, y) — filx), (12
plx, y) = plx, y) — polx)- (13)

This saves Fourier transformations at the inflow boundary. We
have only given conditions for @ > 0. The conditions of @ =
O are fonnd in Section 3.

2.2. The Combined Conditions

The combined technique is intended to speed up the conver-
gence to the steady state without destroying the accuracy of the
converged solution. The Fourier transformed linearized time-
dependent Euvler equations are

W, + Al + wrBi = 0, (14}
where
00 p 0
o jo o0 0 o
B= .
00 0 ~-1/p
¢ 0 ¢ ]
The Founer transformed characteristic variables are
¥, 200
¥, 0 ¢ 0
¥r= =Th= 15
¥, 0 0 1 13)
¥, 0 e 0

According to the directions of the characteristics, we set at the
inflow boundary
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and vice versa at the outflow boundary. For w = 0 we omit
W, in these vectors since v is expanded in a sine series. At
each boundary the steady conditions can be written

b, = s¥,,, (16)
while
9% —
at \pin - 03 (]7)

is a non-reflecting condition. A natural way to combine the
conditions is

(ai + 1) P, =85, (18}

at

where o = diag (). The parameters o; are chosen by the user,

The non-reflecting terms can be appiied when the solution
has been transformed back to the physical space after the appli-
cation of the steady conditions. Otherwise extra Fourier trans-
formations are needed at the inflow boundary. It also turns out
that we often get a slightly better convergence in the end of
the process approaching the accuracy of the computer. The
methods are otherwise equivalent. The non-reflecting step is
thus applied as

(af’~+1) W, = WS, (19)

at

where the vector W, contains characteristic variables of the
physical problem at all discrete boundary points. The vector
¥, contains the values obtained when the unmodified steady
conditions are applied.

The mean values of the solution are treated separately by
the steady conditions. Hence we expect that they should be
treated separately in the non-reflecting step as well. This is
discussed in Section 3.

3. THE MEAN VALUES

Since we only consider the case w = 0, \iﬁ- in this sec-
tion always denotes the mean value of the characteristic variable
v,

3.1. The Steady Mean Value Conditions

Consider the Fourier transformed Euler equations (14). The
steady solution is independent of x for @ = 0. Free-stream data
can thus be used for the mean values at the boundaries. The
amount of available data on each side deterniines which mean-
value conditions can be used. If possible we choose conditions
which lead to rapid convergence to the steady state. If a time-
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marching procedure is used for the calculations in the interior,
we consider the number of characteristics entering the doman
at each boundary. We are not interested in the mean value of
v since v is expanded in a sine series. Two characteristics not
involving v enter the domain at the inflow boundary and one
at the outflow boundary. Hence, two mean value conditions are
needed at the inflow boundary, and one mean value condition is
needed at the outflow boundary. If enough free-stream data are
available, we can use characteristic boundary conditions for
the mean values, We assume that we can use characteristic
conditions at the inflow boundary, i.e.,

(20}
(21}

‘il(a) =pP-w s
Wya) = CpU-w + P = g2

The outflow mean value condition can be chosen from, for ex-
ample, ‘

V. (b) = Zprta — pe 22)
Po(b) = pe, (23)
J?? P(b. }’)u(b,)’) d)’ = u—oop—ijn, (24)

where v, v, define the channel walls to the right and L, is
the width of the channel to the left. The amount of needed
downstream data differs between these conditions. Condition
(24) requires no downstream data at all. It reflects the fact that
the mass flow per unit time across any line across the channel
is equal when the steady state is reached.

3.2. Non-reflecting Conditions for the Mean Values

Consider the Fourier transformed system {14), It is very
simple for w = 0, and it is diagonalized by the matrix T.
The values of the characteristic variables follow exactly the
characteristics. Assume that we use the inflow condition (2})
and the outflow condition (23). The characteristic variable W,
is at the steady state in the whole domain for t = #, = (b —
a)/(@ + @), and ¥, is at the steady state in the whole domain
fort =8 =4 + (b — a)(c — ). The combined condition
corresponding to the outflow condition (23} is

(a% + 1) Vb o=V 0 - 2. =5, @5

where

Volx~ (c+ wr,0) — 2p. forr <,

g =
84 fort=1¢

and gy = g2 — 2p... For @ > 0 we get
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Wb, 1) = Vb, 0)e = + f ;ie@-ﬂfﬂ g(s) ds, (26)

which for ¢ > 1, gives

Wb, ) = Wb, p)e™ M+ g1l — . (27)
As an example we consider a linear initial state ‘ifg(.x, 0). Itis
easily verified for o > 0 that the mean values are not at the
steady state at f = r; unless ‘i’z(x, 0) = g, in the whole dornain.
We thus expect slower convergence due to the non-reflecting
term. In practical calculations the convergence of the mean
values is so rapid anyway that we can disregard this slower
convergence. The exception is when the mass flow condition
(24) is used at the outflow boundary. We recommend avoiding
the non-reflecting mean value term for this condition.

The mean values &, py are decoupled from the rest of the
Fourier transformed sysiem (14). Consider using the outflow
condition (23) and the inflow condition

ﬁﬂ(av t) = U, (28)

or, equivalently,

Vya, ) = — Vi(a. ) + 2pcu_.. (29)
By following the characteristics two times back and fourth
across the region, we get

Wb, t + 2t) = Wb, 0.

Convergence is thus only obtained if the mean values are equal
to the initial state all the time. The comresponding combined
outflow condition {25) can be written

- gm, 0 + aalpub. 1) = p2) = 0, (30)

with o = 0.5/cx. This is the mean value version of the outflow
condition by Rudy and Strikwerda [14]. They use the condition
for the whole solution, not only p,. This means that the con-
verged pressure is constant along the outflow boundary and a
targer region is needed for good accuracy. However, they study
the equations for @ = 0 and optimize the choice of ay using
the boundary conditions (30}, (28). Their result is thus applica-
ble for this set of mean value conditions. Their result is not
applicable if we use the inflow condition (213, for which we
have observed that the mean values reach the steady state in
finite time without non-reflecting terms.

4. SCALING THE NON-REFLECTING TERMS

The combined conditions (19) contain undetermined coeffi-
cients ;. The choice of these coefficients is studied in this
section.

LARS FERM

4.1. Scaling the Dependent Variables

The transformations

pF=pfp, p*=plp, w*=ulc, v =vie, ==t
lead to the non-dimensionalized Euler equations
Wi+ AR + BRaE =0, 3n
where
M 1 0 0 1 0
0 M 0 % . 00
A¥ = ,Bx = 1], 32
0 0 M 0 000 >
0 v 0 M 00 vy 0

and M is the Mach number u/¢. The characteristic variables
corresponding to ¥ are denoted by W*, The combined condi-
tions for the non-dimensionalized problem are

Bl by + W = s, (33)

where 8 = diag (8,)). Here §* denotes the steady conditions
for the non-dimensionalized problem. When condition (33) is
transformed to the original variables, we get

o, = Bilc. (34)

4.2. Scaling Due to the Length of the Channel

The Euler equations
w, + Aw, + Bw, = 0

take the same form after the variable transformations

X = x/L,

Yy=y/L FT=14L,

but the combined condition

is transformed into
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(la%-f- I) ‘iﬁn =5,
Lo a7

where
P& 5.0 = ¥ix, v 0.

The independent variables must thus be normalized for a
general choice of the parameters. The only meaningful scaling
for the mean values is the distance between the outflow and
inflow boundaries denoted by L,. Assume that the optimum
parameters are 3; when L, = ¢ = 1. The results in Subsections
4.1 and 4.2 show that the optimum parameters for the original
equations are

L

X
(o

o = f3;

4.3. Optimizing the Coefficients

We use the one-dimensional analysis by Rudy and Strikwerda
[14]. The relevance of the results for the two-dimensional prob-
lem will be studied experimentally. We linearize the Euler
equations, delete the derivatives with respect to y, and diagonal-
ize the system to

¥, + A¥, =0,
where A = diag (i, ¢ + u, u, ¥ — ¢). The combined conditions

for the characteristic variables corresponding to the steady con-
ditions (3), (8), {(6), (7) are

J )
(a1 P 1) v, =0 (35)
d 1—-M
-+ —
(a2 Py I) ¥, g M‘I’4 (36)
& M
4+ = —p —
(aa 5 r) V= -V 37
at the inflow boundary. The outflow condition is
d 2
Q4_+I '\Ir'4:\1’2+—\p3_ (38)
at 7

To make the analysis possible, we consider one coefficient ar
a time, and set

0!12033:0,(12:00

when optimizing ay. The choice of o, means that we specify
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¥,; ie, ¥, = 0. Assume that the artificial boundaries are x =
0 and x = L,. The solutions have the form

Wy = yem A, (39
Wy = e A, (40)
W, = pee 074, {41)

where (A, Ay, A = (Vu + ), Vu, (1/u —c). The inflow
boundary conditions lead to v, = 0, and assuming that 7, =
= N, we get

Vs = —mav./2,
where
o 2M
1+ M

The outflow boundary condition leads to

1 — a,z = —ae”,

(42)
where 7= (Ay — A,)L,. For a given «, we factorize a such that

Kyils

a=aqe? a=1+—"
u

(43)

We set z = ({ — a,)/ 7and o = ./ 7a,. This leads to the equation

og=(0+& 0= 0<om (44)
Equation (44) has infinitely many solutions £,,( o) in the complex
plane for a fixed ¢ > 0. We want to choose a, such that the
least real parts of z are as large as possible. The least real part
of z comresponds ¢o the least real part of { A special solution
of (44) is

F=1+e?, ot=e",

which gives o* = 3.59, It is shown in [14] that

max min Re (o) = {*. (45)
D<o m
Thus the optimum ¢, = o satisfies
af = Tao*. (46)

We introduce this into (43), set k = ¢ = a/a, and get



312

BETA

BOEN e e

9 02 04 06
MACH

FIG. 1. Scaling due te the Mach number.

1—o*logk 1
P a
This shows that  1s a function (M) of M, and
L,
af M) = ?BdM),

where B,(M) = 20*k(M)/(1 — M?). Note that we obtain the
expected scaling by L,/¢. The function 8,4M) is plotted in Fig. 1.

To study the choice of @; we set @, = 0. This leads to
o (M) = af (M). The steady conditions keep ¥, fixed in time
at the inflow boundary. Thus the added non-reflecting term is
zero, and hence, the choice of a; has no effect on the solution.

5. NUMERICAL EXAMPLES

The Euler equations in conservative form are

W IF 3G _ o
at dx  dy

where

p pit Pu

pu p -+ p puv

W= , F= , G= 5

pu puv pve+p

E w(k + p) vE+p)
and

w + v?
p=w—1{Ekp‘2 )

Weusey = 14,

LARS FERM

3.1. Description of the Experiments

In the numerical calculations presented here we use a finite-
volume technique with artificial dissipation in space and a
Runge—Kutta proceduore in time [13]. If we disregard the artifi-
cial dissipation the operators in space are second-order central
differences if the grid is perfectly uniform.

We are interested in the convergence as function of 8 when
the weights on the non-reflecting terms are «; = B{(L,/c). We
present the results as functions of 8, but we omit the factor
\G when calculating ¢. The weights are thus

m=&%VE (47)

where \/'; == 1.18. Some experiments with different values of
v suggest that the scaling with L,/c is more general. Unless
otherwise mentioned we set 3, = 8, = 3, = 3, = B in all
numerical examples.

We consider the boundary conditions

S, the steady conditions in Section 2
C, the combined conditions in Section 3
N, the conditions W, = f,

where fis the free-stream value far outside the boundary. The
mean values of the converged S-solutions are used for the
missing outflow values of f needed for the N-conditions. The
mean value parts of the S- and C-conditions are always (20),
(21), and (24). No non-reflecting mean value terms are used
in the numerical examples. The reasons for that are given in
Section 3.

The goal is to cbtain the steady S-solution rapidly by using
the C-conditions. We are thus interested in the difference to
the steady S-solution during the computation. We will refer to
this difference as the error, even if the S-solution is not the
exact solution of the mathematical problem. In some cases
(IL.a,III) the S-solutions do not converge without the non-re-
flecting terms. In these cases the solutions are compared to a
converged C-solution, which well satisfies the steady condi-
tions. All resulis are measured using the norm

( 1 i i )'-!2
= 2
Il = (- i)

where #. and n, are the number of grid lines in the x- and y-
directions. Only the pressure is considered when solutions are
compared. In convergence history plots the norms are scaled
such that the logarithm starts from zero.

Unless otherwise mentioned p_. = p_. = 1. No outflow
data are given. Therefore we use the mass flow condition (24)
at the outflow boundary. We must be careful when choosing
the initial solution when using this condition; otherwise the
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FIG. 2. Flow in channels, Isobars. Channel I, M., = 0.4; Channel 1I, M_. = 0.8.

solution may not converge. The initial state in the numerical
examples is

_ P-= _P-=
plx, y) ey plx, y) prees
u(x, y) = u_agq(xy, vx,y) =0,

where g(x) = (v(a) — yi(a))/(3:(x) — yi(x)) and ¥, and y, are
the upper and lower channel walis.

5.2. Experimental Optimization of the Coefficients

We use the geometries in Fig. 2. The upper and lower bound-
aries are solid walls. The dashed lines are the artificial inflow
and outflow boundaries, Outside these artificial boundaries the
channel walls are infinitely long straight lines. We use uniform
25 X 25 grids. The Mach numbers of the test problems are
given in Table . The six test problems are solved with a
common value 3 for the coefficients 3; in (34). The values 0,
L5 1,2, 4, 8 16 are tested. We observe the number of time
steps needed to reduce the error to 1073, The results are plotted

TABLE 1
The Mach Numbers in Channels [ and IT

M. M.
I It I I
a 0.5 0.8 0.73 .52
b 0.4 0.6 0.54 0.44
c 0.3 0.4 0.39 .31

Note. Only M_., is used as data, while M, are values obfained from the
converged numerical solutions.

in Fig. 3a. Dashed lines correspond to Channel I, and solid
lines to Channel II. Results for Mach numbers (a), (b), and (c)-
are labeled “*O,”” “*X”’, and ““+’ respectively, The best results
(or very close to the best ones} are obtained for # = 2 in all
six cases.

We also investigate each 3; individually. It turns out that the
convergence is independent of B,. This is due to the fact that
¥, is kept fixed at the inflow boundary by the steady conditions.
The corresponding non-reflecting term is thus zero. The results
for 3, suggest that the value of 8, can be reduced. Figure 3b
shows results when (8, B2, £, B = (0, 8/2, B, 8). The
convergence is now clearly improved for larger values of 8.

Scaling with the speed of sound. The results in Fig. 3 are
obtained for problems with ¢ = VAp/p = 1.18. If we use the
inflow data p_. = 1/(p_.) = 4, the speed of sound is reduced
by a factor of 4. Figure 4a compares results for problem 1l.a
with the original speed of sound to results with the reduced
speed of sound. These results are labelled ‘“x’* and “*Q,”
respectively. The figure confirms the scaling with the speed of
sound in (47).

Scaling with the length of the channel. Consider the geome-
tries in Fig. 5. The grids are 25 X 50 and 50 X 25, respectively.
The inflow mach number is 0.4. The number of iterations needed
to reduce the error to 1073 for different values of 8 are shown
in Fig. 4b. Results for problem Il.c are also shown. The results of
Channels IL IIL, IV are labelled <“ X,”” “°0,”" **+,”" respectively.
The figure confirms the scaling with the length of the channel
in condition (47).

Scaling depending on the Mach number. The optimum 5,
B:, obtained by the one-dimensional analysis in Section 4.3,
are shown in Fig. 1. The numerical experiments above give
smaller optimum parameters. On the other hand, it is confirmed
that the optimum paramelers do not depend much on Mach
numbers away from M = 0 and M = 1. The largest Mach -
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g
o

Y
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o
o

1 2
BETA

FIG. 3. Convergence for different values of 8 for six test problems: (a) B, =

number in the numerical examples is found in Problem ILa,
where M_., = 0.8, but M,, ~ 0.52. Experiments with M =~ 0.85
in the whole region give as expected a larger optimum «. These
experiments are otherwise less interesting. Almost straight
channel walls are used in the interior to keep the flow subsonic.
It can be pointed out that the steady conditions become ill
conditioned when the Mach number is close to one.

5.3. The Corvergence with Large Non-reflecting Terms

The convergence of the mean values of the solution is studied
in Section 3.2. Consider the mean value conditions (20), (21),
(25). For a large a equations (26), (27) show that Vb, 1) =~
‘I’4(b 0) for a long time. During this first phase the initial state
‘I’4(x 1} is approximately replaced by ‘Iﬁ(b 0) in the whole

3000 T M

TIME STEPS

0 0.25

1 2
BETA
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3000

TIME STEPS

1000} -~

(=]

0 025 05 1 2 4 8
BETA

B=B=B,=Bb2B=5=5=5

domain. In the second phase the solution slowly tends to the
correct steady state.

If we consider the whole solution, not just the mean values,
a large c still implies that ¥;, for a long time almost stays at the
initial state at the boundary. Thus the solution can be expected to
initially tend to that steady solution which is obtained with the
boundary condition ¥, (£) = ¥,(0). The S-values of ‘I’m are
only slowly allowed to enter the region by the non-reflecting
boundary terms. The slowly entering values become noticeable
when the residual has been decreased enough by the rapid initial
convergence. We thus expect a similar two-phase behavior as
for the mean values. This behavior is confirmed by Fig. 6b. It
is not due to the mean values, since no non-reflecting mean
value term is used. We do not want the two-phase behavior
in practical applications. The boundary conditions should be

[x]

[}

o

(=]
T

TIME STEPS

0.25 0.5 1 2 4 8 16

FIG. 4. Verifying the scaling with the speed of sound (a) and the length of the channel (b).
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balanced such that the solution converges rapidly to the correct
steady state all the time.

Figure 6a shows the number of time steps needed to reduce
the error and residual to three levels. The levels for the residual
are 107* (O), 1075 (%), and 107% (+). The levels for the error
are 10 times larger. These results are obtained for problem La.
Note that the slower convergence for larger 8 is hard to detect
on the residual. We can check that a solution satisfies the
unmodified steady conditions before accepting it.

5.4. An Example with Correctly Balanced
Boundary Conditions

We solve problem Il.a using the C-conditions with 8; = 2
and for comparisen, also with the N- and S-conditions. The

3000

20001

TIME STEPS

-
[=]
=]
(=]

315

0.2: ”A"——\ E

Isobars in short and long channels: (a) Channel TII; (b) Channel TV.

convergence histories of the error and residual are plotied in
Fig. 7. Note that the convergence of the C- and R-residuals are
very similar, and that the C-error converges at about the same
rate. This indicates that the C-conditions are implemented in
an optimum way. Note that these C- and S-results are obtained
without using any outflow data at all.

6. CONCLUSIONS

We study how the steady and non-reflecting parts of the
combined conditions should be balanced to optimize the conver-
gence to an accurate steady state. The best results, or very close
to the best ones, are obtained if the weights on the non-reflecting
terms are «, =~ 2LJc. Here L is the length of the channel and

-1

-2

CONVERGENCE HISTORY

-4

2000 3000
TIME STEPS

0 1000 4000

FIG. 6. Behavior for large values of 8: (a) Slow convergence (—) for 8 = 8 is less obvious on the residual (-). (b) Slow convergence to S, but rapid

initial canvergence to the wrong state N.
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FIG. 7. The convergence when the boundary conditions are correctly balanced: {a) The error. (b) The residual.

cis the speed of sound. This optimum is valid for Mach numbers
away from M = 0 and M = 1, There is usually a relatively
wide interval where the optimum parameters can be chosen.
Too large weights on the non-reflecting terms lead to slower
convergence. This may be hard to detect on the residual. Some
experiments indicate that we get a more robust method if
is reduced to e, = L/c. In numerical examples with correctly
balanced boundary conditions we obtain the accuracy of the
steady conditions and the convergence rate of the characteristic
ongs. These are the best results that can be expected.

The mean values can be treated in different ways by the
boundary conditions. If the steady mean value conditions are
chosen correctly, the convergence of the mean value are very
rapid. Non-reflecting mean value conditions do in this case not
accelerate the convergence.
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